\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE- SEMESTER-IV (NEW) EXAMINATION - WINTER 2020

Subject Code:3140708
Date:17/02/2021
Subject Name:Discrete Mathematics
Time:02:30 PM TO 04:30 PM
Total Marks:56

Instructions:

1. Attempt any FOUR questions out of EIGHT questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Marks
Q. 1 (a) Find the power sets of (i) $\{a\}$, (ii) $\{a, b, c\}$. 03
(b) If $f(x)=2 x, g(x)=x^{2}, h(x)=x+1$ then find (fog)oh and $f o(g o h)$. 04
(c) (i) Let N be the set of natural numbers. Let R be a relation in N defined 03
by $x \mathrm{R} y$ if and only if $x+3 y=12$. Examine the relation for (i) reflexive(ii) symmetric (iii) transitive.(ii) Draw the Hasse diagram representing the partial ordering $\{(a, b) / a$04divides $b\}$ on $\{1,2,3,4,6,8,12\}$.Q. 2 (a) Let R be a relation defined in $\mathrm{A}=\{1,2,3,5,7,9\}$ as $\mathrm{R}=\{(1,1),(1,3),(1,5)$,03$(1,7),(2,2),(3,1),(3,3),(3,5),(3,7),(5,1),(5,3),(5,5),(5,7),(7,1),(7,3)$,$(7,5),(7,7),(9,9)\}$. Find the partitions of A based on the equivalencerelation R.
(b) In a box there are 5 black pens, 3 white pens and 4 red pens. In howmany ways can 2 black pens, 2 white pens and 2 red pens can bechosen?
(c) Solve the recurrence relation $a_{n}-4 a_{n-1}+4 a_{n-2}=n+3^{n}$ using 07 undetermined coefficient method.
Q. 3 (a) Define sefortax adjacent vertices and a pendant vertax. 03
(b) Definetree. Prove that if a graph G has one and only one path between 04 eve pair of vertices then G is a tree.
(c) (i) Find the number of edges in G if it has 5 vertices each of degree 2 03
(ii) Define complement of a subgraph by drawing the graphs. 0404
Q. 4 (a) Show that the algebraic structure $\left(G,{ }^{*}\right)$ is a group, where $G=\{(a, b) / a, b \in R, a \neq 0\}$ and $*$ is a binary operation defined by $(a, b)^{*}(c, d)=(a c, b c+d)$ for all $(a, b),(c, d) \in G$.
(b) Define path and circuit of a graph by drawing the graphs. $\mathbf{0 4}$
(c) (i) Show that the operation * defined by $x^{*} y=x^{y}$ on the set N of natural numbers is neither commutative nor associative.
(ii) Define ring. Show that the algebraic system $\left(Z_{9},+_{9}, \bullet_{9}\right)$, where $Z_{9}=\{0,1,2,3, \ldots, 8\}$ under the operations of addition and multiplication of congruence modulo 9 , form a ring.
Q. 5 (a) Define subgraph. Let H be a subgroup of ($Z,+$), where H is the set of even integers and Z is the set of all integers and + is the operation of addition. Find all right cosets of H in Z.
(b) Define adjacency matrix and find the same for

(c) (i) Draw the composite table for the operation * defined by $x * y=x$, $\forall x, y \in S=\{a, b, c, d\}$.
(ii) Show that an algebraic structure (G, \bullet) is an abelian group, where
$G=\{A, B, C, D\}, A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$,
$D=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ and \bullet is the binary operation of matrix multiplication.
Q. 6 (a) Define indegree and outdegree of a graph with example. 03
(b) Prove that the inverse of an element is unique in a group $(G, *)$. 04
(c) (i) Does a 3-regular graph with 5 vertices exist?

03
(ii) Define centre of a graph and radius of a tree. 04
Q. 7 (a) Check the properti of commutative and associative for the operation

* defined by $x^{*} y=x+y-2$ on the set Z of integers.
(b) Define groug permutation. Find the inverse of the permutation
(c) (i) Brow that $(p \wedge q) \rightarrow(p \vee q)$ is a tautology
(ii) Obtain the d.n.f. of the form $(p \rightarrow q) \wedge(\neg p \wedge q)$.
Q. 8 (a) Find the domain of the function $f(x)=\sqrt{16-x^{2}}$.
(b) Define lattice. Determine whether POSET $\{\{1,2,3,4,5\} ; \mid\}$ is a lattice.
(c) Show that the propositions $\neg(p \wedge q)$ and $\neg p \vee q$ are logically equivalent.

